List of authors
Download:TXTPDF
The Art of Seeing
source of dysfunction lying within the seeing-process, namely improperly directed attention.

Attention is the indispensable condition of the two mental elements in the total process of seeing; for without attention there can be no selection from the general sense-field and no perception of the selected sensa as the appearances of physical objects.

As with all other psycho-physical activities, there is a right way of directing attention, and there is also a wrong way. When attention is directed in the right way, visual functioning is good; when it is directed in the wrong way, proper functioning is interfered with, and the ability to see falls off.

Much has been written on the subject of attention, and many experiments have been performed with a view to measuring its intensity, its span, its effective duration, its bodily correlations. Only a few of these general considerations and particular facts are relevant to our present subject, and I shall therefore confine myself solely to these.

Attention is essentially a process of discrimination—an act of separating and isolating one particular thing or thought from all the other things in the sense-field and thoughts in the mind. In the total process of seeing, attention is closely associated with selection; indeed, it is almost identical with that activity.

The various kinds and degrees of attention may be classified in a number of different ways. So far as seeing is concerned, the most significant classification is that which divides all acts of attention into the two main classes of spontaneous attention and voluntary attention.

Spontaneous attention is the kind of attention we share with the higher animals—the unforced act of selective awareness which is determined by the biological necessities of keeping alive and reproducing the species, or by the exigencies of our second nature, in other words, of our habits and established patterns of thought, feeling and behaviour. This kind of attention involves no effort when it is shifting and transitory and not much effort when it is prolonged—for spontaneous attention may be prolonged, even in the animals. (The cat lying in wait beside a mouse hole is an obvious example.)

Voluntary attention is, so to speak, the cultivated variety of the wild, spontaneous growth. It is found only in man, and in animals subjected by human beings to some form of training. It is the attention associated with intrinsically difficult tasks, or with tasks which we have to perform, even though we don’t particularly want to. A small boy studying algebra exhibits voluntary attention—that is, if he exhibits any attention at all. The same boy playing a game exhibits spontaneous attention. Voluntary attention is always associated with effort, and tends more or less rapidly to produce fatigue.

We must now consider the bodily correlations of attention, in so far as these affect the art of seeing. The first and most significant fact is that sensing, selecting and perceiving cannot take place without some degree of bodily movement.

“Without motor elements,” writes Ribot, in his classical study, The Psychology of Attention, “perception (and it is clear from the context that he includes under this term sensing and selecting as well as perceiving) is impossible. If the eye be kept fixed upon a given object without moving, perception after a while grows dim, and then disappears. Rest the tips of the fingers upon a table without pressing, and the contact at the end of a few minutes will no longer be felt.

But a motion of the eye or of the finger, be it ever so slight, will re-arouse perception. Consciousness is only possible through change; change is only possible through movement. It would be easy to expatiate at great length upon this subject; for although the facts are very manifest and of common experience, psychology has nevertheless so neglected the role sustained by movements, that it actually forgot at last that they are the fundamental condition of cognition in that they are the instrument of the fundamental law of consciousness, which is relativity, change. Enough has now been said to warrant the unconditional statement that, where there is no movement, there is no perception.”

It is more than fifty years since Ribot enunciated this important truth about the connection between movement and perception. In theory, everyone now agrees that Ribot was right; and yet orthodox ophthalmologists have made no effort to discover how this principle could be applied in practice, so as to improve visual functioning. That task was left to Dr. Bates, in whose system the fundamental importance of movement as an aid to seeing is continually stressed.

Meanwhile the researches of the experimental psychologists have confirmed Ribot’s categorical conclusion, and furnished theoretical justification for many of the practices and techniques taught by Dr. Bates and his followers.

In the paper already cited, Dr. J. E. Barmack lays it down that “freely shifting attention is an important prop of vital activity. If attention is restricted to an inadequately motivating task, vital activity is apt to be depressed.” And the importance of mobility is similarly stressed by Professor Abraham Wolf, in his article on “Attention” in the last edition of the Encyclopaedia Britannica. “The concentration of attention upon some object or thought may continue for a considerable time among normal people. But what is commonly called an object or a thought is something very complex, having many parts or aspects, and our attention really passes from part to part, backwards and forwards all the time.

Our attention to what may be seriously called a single thing, affording no opportunities for the movement of attention from part to part, say a small patch of colour, cannot be held for more than about a second, without serious risk of falling into a hypnotic trance, or some similar pathological condition.” Where seeing is concerned, this continuous movement of attention from part to part of the object under inspection is normally accompanied by a corresponding movement of the physical sensing apparatus. The reason for this is simple. The clearest images are recorded in the macular area in the centre of the retina, and particularly at the minute fovea centralis.

The mind, as it selects part after part of the object for perception, causes its eyes to move in such a way that each successive part of the object is seen in turn by that portion of the eye which records the clearest image. (Ears have nothing corresponding to the fovea centralis; consequently the indispensable shifting of attention within the auditory field does not involve any parallel shifting of the bodily organ. The discriminating and selecting of auditory sensa can be done by the mind alone, and do not require corresponding movements of the ears.)

We have seen that, to be effective, attention must be continuously on the move, and that, because of the existence of the fovea centralis, the eyes must shift as continuously as the attention of the mind controlling them. But while attention is always associated, in normal subjects, with continuous eye movements it is also associated with the inhibition of movements in other parts of the body. Every bodily movement is accompanied by a more or less vague sensation; and when we are trying to pay attention to something, these sensations act as distracting stimuli. To get rid of such distractions, we do what we can to prevent our bodies from moving.

If the act of attention is accompanied by manual or other activities connected with the object being attended to, we strive to eliminate all movements except those strictly necessary to our task. If we have no task to perform, we try to inhibit all our movements, and to keep our bodies perfectly still. We are all familiar with the behaviour of an audience at a concert. While the music is being played, the people sit without stirring. As the last chord dies away, there breaks out, along with the applause (or apart from it, if the intermission is between two movements of a symphony) a positive tornado of coughs, sneezes and random fidgettings.

The explosive intensity of this outburst is an indication of the strength and completeness of the inhibitions imposed by attention to the music. Francis Galton once took the trouble to count the number of bodily movements observable in an audience of fifty persons who were listening to a rather boring lecture. The average rate was forty-five movements a minute, or one fidget, more or less, for each member of the audience. On the rare occasions when the lecturer deviated into liveliness, the fidget-rate declined by upwards of fifty per cent.

Inhibition of unconscious activities goes hand in hand with that of conscious movements. Here are some of the findings in regard to respiration and heart beat, as summarized by R. Philip in a paper on The Measurement of Attention published (1928) by the Catholic University of America.

“In visual attention respiration is decreased in amplitude, but the rate is sometimes quickened, sometimes slowed; in auditory attention, the rate is always slowed, but the effect upon amplitude is variable. Restricted breathing often gives a slower heart rate, particularly in the first moments of attention. This slowed rate is to be explained from inhibited breathing, rather than from direct influence of attention.”

Continuous movement of the eyes, inhibition of movement in the rest of the body—such is the rule where visual attention is concerned. And so long as this rule is observed, and there is no disease or psychological disturbance, visual functioning will remain normal. Abnormality sets in when the inhibition of movement, which is right and proper in the other parts of the body, is carried over to the eyes, where it is entirely out of place. This inhibition of the movement of the eyes—a movement of

Download:TXTPDF

source of dysfunction lying within the seeing-process, namely improperly directed attention. Attention is the indispensable condition of the two mental elements in the total process of seeing; for without attention